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This report includes the results of a study conducted by Astro Research 
Corporation (Astro) on structural ccncepts for ultralightweight spacecraft as a 

part of Jet Propulsion Laboratory (JPL) Contract No. 956386. This work is the 
continuation of studies bqun under JPL Contract No. 055873 (Refs. 1-1 and 
1-2). The abjectives of these studies were to identify and evaluate concepts 
for ultralightweight space structures and to assess the validity of their 
potential application in advanced spacecraft. 

In the eariier program, the following topics were investigated and 
reported on: 

o Membrane wrinkling under pretensioning 
o 
o 
o Design of an hflated reflector spacecraft 
o General instability of a rim 
o 

Load-carrying capability of pressurized tubes 
Equilibrium of a precmpressed rim 

Structural analysis of a pressurized isotensoid column 

In the current stu'iy, the design approaches for a paraboloidal reflector 
spacecraft nave been extended to include a spin-stiffened design, including 
both inflated and truss central columns, and to include both deep truss and 
rim-stiffened geodesic designs. The spinning spacecraft analysis Is included 
in Section 2. The two truss designs ara covered in Section 3 and the 
ApFendix. 

Section 4 of this report compares the performance of four different 
approaches to the structural design of a paraboloidal reflector spacecraft. 
The spinning and inflated configurations result in very low total masses and 
some concerns about their performance due to unresolvea quesLons about 
dynamic stability and lifetimes, respectively. 
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1-1. Miller, Richard K.; Adams, Louis R.; and Hedgepeth, John M.: Structural 
Concepts for Ultralightweight Spacecraft. Astro Research Corporation, 
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1-2. Final Report - A Study of Structural Concepts for Ultralightweight 
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SECTION 2 

DESIGN OF A SPINNIS REFLEPCTOR SPACECRAPT 

Reported in this section are the design procedures used to develop the 

dimensions and masses of spacecraft structural components for a spinning 
paraboloidal membrane reflector in a hoop-and-column configuration. A primary 
structural member in this configuration is the compression-carrying central 
column. Both inflated cylindrical and truss column designs are presented in 
some detclil, but the inflated column is found to be vastly superior on the 
basis of a total mass criterion. 

2.1 DESIGN OF RgpLElcTOR 

Consider a spinning paraboloidal membrane with coordinates shown in 
Figure 2-1. As shown in Reference 2-1, the meridional edge tension N and 
circumferential edge tension Ne may be expressed as 

9 

N = -- 4fP J 1 + (1/16f2) ( ~ K / D ) ~  
9 In, 

* 4fP 1 2 2  m"W D 
Ne 4 TID 

(2r/D)2 + (1/16f2) ( ~ K / D ) ~  

where 

P = total axial compression force in central column (N) 

r = radial coordinate of point on membrane surface (m) 

F = focal length of paraboloid (m) 

m" = mass per unit area of membrane material (kg/m ) 
2 

W = circular spin rate (rad/s) 

(2-2) 

D = diameter of membrane rim (m) 

f = P'/D 

2- 1 



2 r z = -  
4F 

(F = focal length) 

Figure 2-1. Geometry of spinning paraboloidal membrane. 103d 
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Note from Eqs.  (2-1) and (2-2) that as (2r/D)+0, we find that N -MD and 

N +e. Hence, the central portion of the membrane contains stress 
singularities and must be removed. The remaining membrane forms a useable 
reflector surface in the form of a paraboloidal annulus. Let the inner radius 
r be chosen (arbitrarily) as 

0 
e 

0 

r 0 = 0.4 (5) 
This choice of r leaves approximately 84 percent of the potential membrar-c 

surface for use as a reflector while eliminating the stress singularities in 
the center. 

0 

Note also from Eq. (2-1) that for a membrane of fixed geometry the 

amplitude of the meridional edge tension is determined by P, and that the 
Hence, setting (arbitrarily) this maximum maximum value of N occurs at r 0’  0 

N at 
0 

we can determine the corresponding column compression load P by 

nD(5 N/m) F =  

Specifically, for three different values of f, Eq. (2-5) yields the results 

D = 10.525 N/m; f = 1 

(0.315 N/n?; f = 2 

(2-6) 

As revealed by Eq. (2-l), N decreases monotonically as r is increased 
until the minimum value is attained at the outer rim, r = D/2. Using the 
values for column compression P given in Eq. (2-6), we find the corresponding 
values of the minimum N are 

4 

@ 
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(0.882 N/m; f = 1/2 

N 0 (r = f )  = 10.821 N/m; f = 1 (2-7) 

10.804 N/m; f = 2 

Returning to Eq. (2-2), we see that for a membrane of tixed geometry and 

with fixed column compression P, the amplitude of the circumferentiar edge 

tension N is determined by the sFin rate w. Furthermore, N increases with r 

to attain a maximum value at the outer rim, r = D/2. The minimum value which 

occurs at the inner rim (r = r ) may be either positive (tensile) or negative 

(compressive) depending on the size of w. Since compressive stresses cannot 

develop in a membrane surface, we arbitrarily set the minimum value of N at 

8 e 

0 

e 

Ne(r = ro) = 0.85 N/m (2-8) 

The corresponding spin rate (I) is determined by 

Using a membrane unit m s s  of 

2 
m" = 4 gm/m (2-10) 

cmsistent with a membrane material of Kapton polymer film of thickness 
3 2 x kg/m3 (as used in Ref. 2-2), we find 

specific values of w for different values of f are 
m, and mass density of 2 x 10 

188 m/s; f = 1/2 

19n m/s; f = 1 

191 m/s; f = 2 

(2-11) 

From Eq. (2 - - ) ,  it is seen that N ixreases monotonically from r = r to 

attain its maximum value at r = D/2. Using the values for T, m", and w given 
in Eqs. (2-6), (2-lo), and (2-11), we obtain the following specific values for 

Nenax 

e 0 
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(34.6 N/m; f = 1/2 

Ne(. = 5) = 1 3 5 . 3  N/m; f t 1 (2-12) 

?he su r face  a rea  of  t h e  parabolc ida l  annulus is found from c a l c u l u s  t o  be 

= 0.855; f = 1 i 0.844; f = 2 parab. annulus 

(2-13) 

Mult iplying the  su r face  a rea  i n  Eq. (2-13) by t h e  U p i t  mass i n  Eq. (2-101, W e  

f i n d  t h e  to ta l  mass of tire parabolo ida l  annulus  is 

2 

2 = 3.42 g/m ; f = 1 I 3.38 g/m-; f = 2 

3.60 g , h  ; f = 1/2 

3 annulus 

(2-14) 

S ince  t h e  inner edge of the parabolo ida l  annulus is not  stress f r e e ,  an 

a d d i t i o n a l  lcad-carrying structural  element is requi red  in s ide  the  inner  rim. 

"0 enhance tne r e f l e c t i v e  p o t e n t i a l  of the  e n t i r e  su r face ,  consider  a con ica l  

membrane whose geometry is chose3 a s  a "bes t - f i t "  to tho  missing paraboloid i n  

t h e  inner region r C r I n  order  to reduce t h e  stresses within t h e  c o n i s a l  

membrane, addit . iona1 I : - p o r t  is provided by s t a y  tapes  which a t t a c h  a t  t h e  

cone-r i raboloid i n t e r f a c e  m d  run behind t h e  cone to  the  end of the  c e n t r a l  

column, a s  shown i n  F i g J r e  2-2. 

0 

Minimizing the  1,iean-squared v e r t i c a l  dev ia t ion  between t h e  cone and 

paraboloid i n  the  region r C r w e  c b t a i n  by c a l c u l u s  the  opt imal  choice  of A 
0 '  

A 1 
D 400 f (2-15) 

Using t h i s  value fo r  A ,  w e  f i n d  by ca l cu lus  t h e  su r faze  a r e a  of t h e  i n t e r i o r  

cone is 

2- 5 



7 Front stai-'s 

mass 

Fiyure 2-2. Detailed geDmetry of connections between major 
structural compnents of spinning reflector 
satellite. 104d 
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I 0.161; f = li2 

'interior cone 
- - 4 25 + ("r 16 f = 10.160; f = 1 

( 0.160; f = 2 

(2-16) 

Muitiplying the surface ared in -4. (2-16) by the unit mass in Eq. (2-lo), we 

obtain the total mass of the interior cone 

2 (0.644 g/m ; f = 1/2 

= 0.640 g/m'; f = 1 i 0.640 q/m ; f = 2 2 cone 

(2-17) 

Combining the masses of the paraboloidal annulus arid interior cone, we 

obtain the total membrane mass 

2 
(4.24 g/m ; f = 1/2 

2 

2 

= 4.06 g/m : f = 1 i 4.02 g/ru ; f = 2 total membrane 

(2-18) 

The interior conical inembrane is subjected to substantial edge tension, 
and, in addition, it is spinning and is subjected to centrifugal loads due to 

its own inertia. Ignoring the centrifugal loads in comparison with the 

meridional edge tension, we can see that 

(2-19) 

in the COL. The circumferential stress N is nesligible in t h i s  case. Note 

that, again, we observe a stress singularity at r = 0. Thus, it is again 

necessary to define another inner radius r and remove the membrane in the 

region r ' r A conical annulus is formed thereby. 

e 

C 

C' 

In order to define r ].et N (I ) = 2.5 N/m in the cone (the other 2.5 

N/m to be caried by the back stays). Then solving from Eq. (2-19) for that 

radius r for which N ( r  1 = 35 N/m, we obtain 

C' ( $ 0  

C o =  

2- 7 



D r = -  
C 70 (2-20) 

This particular choice of rc balances the maximum edge tension in the conical 

annulus with that in the paraboloidal annulus. 

The radial component of the meridional edge tension at the outer rim r = 

D/L of the paraboloidal membrane must be reacted by some structural member 

external to the nenbrane. A convenient means of pimiding such reaction in 
this spinning case is through the ce:itrifugai force induced by an added rim 
mass. 

Consider a uniform rim mass with lineal mass density 6 as shown in Figure 
2-2. The radial equation of motion of the rim mass (assuming negligible hoap 

tension effects in the rim mass) is 

2 L2 = T cos a + N cos B (2-21) 
2 $ 

where T is the tension in the front stays per unit circumferential length 

around the rim, and a and 6 are the angles shown in Figure 2-2. The term N 

is the meridional edge tension in the paraboloidal annulus at r = D/2. From 

geometry, it can be shown thit 

Q 

0 = tan 

The 2-direction equation of motion of the rim mass is 

(2-22) 

(2-23) 

T sin a = N sin 
4 

2-8 
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Substituting the values of N and w from Eqs. (2-7) and (2-111, respectively, 

we can obtain by using Eqs. (2-21) and (2-24) the required t-nsion T in the 

front stays 8s well as the required rim mass m. 

4J 
n 

The results are 

0.657 K/m; f = 1/2 

0.226 U/m; f = 1 

0.103 N/m; f = 2 

and 
i0.298 g/m2; f = 1/2 

; f = l  

f = 2 

2 

2 0.181 g/m ; 

2.3 DESI= OF -S 

(2-25) 

(2-26) 

The required tension in the front stays is given in Eq. (2-25). Assuming 

a stay material of Kevlar 49 with working stress U = 6.9 x 10 N/m and mass 

density p = 1380 kg/m , and assuming a uniform stay distribution of 90 stays 

around the circumference of the reflector rim, we performed an aallsis cf 

stay resonant frequencies and tension changes due to spin-ing. It was found 

that the stay resonant frequencies are about 5 to 20 t- -.s higher than the 

spin rate w. Furthermore, it whs found that the change in stay tension 

induced by the spin of the satellite was less than 1 percent in all cases. 

Hence, it is concluded that neither of these effects has a significant 
influence on the design. 

8 2 
3 

The total mass of front stay tapes is independent of the number of &apes 

and is given by 

2 (0.00329 g/m ; f = 1/2 
2 

2 i 0.00165 g/m ; f = 2 

- - 2PT = 0.00192 g/m ; f = 1 
u COS a (2-27) 
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2.4 DESI(;IIOPBACKSUPS 

ThL required t ens ion  i n  the back stclys is 2.5 N/m, as previous ly  

discussed. Since these s t a y s  are much s h o r t e r  and more heavi ly  loaded than t h e  

f r o n t  s t a y s ,  t h e  p o t e n t i a l  problems induced by satellite spiii (e.g., forced 

zesonance of s t a y  tapes and change i n  static tension)  are even less l i k e l y  to  
be important f o r  the b a c k  s t a y s  than f o r  t h e  f ront .  Hence, no a d d i t i o n a l  

cons ide ra t ion  is required.  

The umss of the  back stays is given  by 

- - 
CYCOS y (2-28 1 

where Y ,  H, and R are s h o w  i n  Figure 2-2. From geometry, it can be shown 

t h a t  

74.5 degrees; f = 1/2 

Y = 82.2 degrees; f = 1 I 86.1- degrees; f = 2 

and 

[0,0554; f = 1/2 

(+) = {0.92,6; f = 1 

(2-29) 

(2-30) 

(0.0138; f = 2 

Assuming '..he back s t a y s  are made of Kevlar 4 9  with t h e  same p r o p e r t i e s  as 

thosc .sed i n  the  design of the  f r o n t  s t a y s  w e  o b t a i n  

2 I O . O C 4 1 7  g/m ; f = 1/2 

2 

2 

0.00404 g/m ; f = 1 

0.00401 g/m ; f = 2 

(2-31) 
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One of the two structural concepts for carrying the compression load in 

the center column is based on the us% of an inflated cylindrical tube. The 
tube is made of fiber-reinforced mylar with f i x d  gauge thickness of t = 2.4s  

x m (0.1 mil), and the internal pressure is adjusted to carry the 

compressive load without benefit of compressive stress in the tube walls. 

Buckling strength is provided by bending stiffness in the elastic tube walls. 

A schematic diagram of this co!.umn is shown in Figure 2-3. 

Because the column must spin with the membrane reflector, column failure 

!Ri account for this fact, may occur by whirl instability as well as buckling. 

the design criteria for the column are based on the formula 

(P.S.) x ( P + - &:?) = *cr 

where 

3 3  n Er t = -  
'cr L2 

is the Euler buckling load, and where 

(2-32) 

(2-33) 

(2-34) 

is the total mass of the column (exclusive of the end caps). The notation 

used here is as follows:. 

F.S. 

P 
w 

E 
t 

r 

L 

P 

factor of safety 

compressive end load 

satellite spin rate 
modulus of elasticity of tho tube wall 

wall thickness 

tube radius 

column length 
mass density of the tube wall 

2-11 



t f  

Figure 2-3. Inflated cylindrical c e n t e r  column, 1 0 5 A  
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= molecular weight of pressurant K 

= universal gas constant R 

T = pressurant temperature 

0 

0 

Local buckling of the tube wall is prevented by choosing the pressure to be 

(2-35) E 

m 
p = -  

2 

Analysis of the whirl instability of the column yields the following result 

for the critical spin rate wcr of the column 

(2-36) 

From a design point of view, Eqs. (2-32) through (2-34) may b.- regatded as an 

equivalent to a single cubic equation which determines the required column 

radius r for given gauge thickness t and ot25er parameters. Shown in Table 2-1 

are the results of this design procedure based on the column loads presented 

in Eqs. (2-6) and spin rates presented in Eq. (2-11). The results are based 

on a factor of safety of two a.id fiber-reinforced mylar properties of 

E = 28 x lo9 N/m2 

p = 2080 kg/m3 

The pressurant is assumed to be N at 300 K, for which 2 

1.123 x lo-' kg/N-m MO 

ROT 
- =  

(2-37) 

(2-38) 

In reviewing the results presented in Table 2-1, it is observed that 

large aperture (small F/D) designs are governed primarily by Euler buckling, 

while small aperture (large F/D) designs are giverned primarily by whirl 

instability . The relative column diameter and unit mass increase 

substantially with increasing (F/D) , while the internal pressure 

simultaneously decreases. In general, the column appears to be quite 

2-13 
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lightweight in comparison with the membrane reflector so that a relatively 

balanced design is possible. Note, however, that the column radius becomes 

quite large for the F/D = 2 case so that the condition of Eq. (2-20) is 

violatd. It would be necessary in this case to enlarge the inner radius r in 
the conical membrane to accommodate the large column which results from Table 

2-1. The amount of enlargement required is not excessive, though, and the 

effect on the tension N4 in the membrane would be beneficial in that it would 

be reduced from the nominal value of 35 N/m. 

In closing, it should be noted that attempts were made to create 

alternative center column designs based on inf lateJ isotensoid column 

technology (Ref. 2-2). These attempts were not considered successful in that 

the resulting designs were not capable (with reasonable slenderness) of 

satisfyin9 the whirl stability criterion. 

2.6 DESIGN OF TRUSS CO- 

An alternative structural concept for the center column is based on the 

truss configuration. The truss is considered to be a coilable lattice column 
of typical Astromast design (Ref. 2-3). The three continuous longerons are 

made of a graphite-epoxy composite material, and the cross section is assumed 

to have the shape of an equilateral triangle. Shear stiffness is provided by 

diagonal tension cords, and stability of cross-sectional shape is provided by 

three equal-length battens which attach to the longerons in the plane of the 

cross section at periodic intervals, or bays, as shown in Figures 2-4 and 2-5. 

Three different approaches to the design of the truss column are 

presented. The first approach is the most realistic, in that both local and 
overall imperfections are taken into account in an accurate manner. The 

zesulting unit mass for the column is found to be unacceptably large in 

comparison with the membrane reflector mass in all cases except the smallest 

diameter, largest aperture configuration. As a result, two more design 

approaches are presented in order to explore the extent to which the excessive 

column mass may be due to imperfection effects (which were not considered in 

the previous design of an inflated cylindrical center column). Design of a 
perfect truss zolurnn under the same criteria but without imperfections yielded 

very little reduction in unit mass, however, indicating that the large unit 

2-15 







mass of the truss column is not due to imperfection effects. ;’inally, a 

minimum weight design in which Euler and local buckling loads are set equal by 
relaxing a packaging constraint on longeron radius is employed, and 
substantial reduction in column unit mass is obtained. tfawever, even in this 
case, the unit masses are still nearly an order of magnitude larger than those 
obtained for the inflated cylindrical column design. 

2.6.1 Design of a hues Colum Including Effects of Initial Imperfections 

Consider an Astrornast truss column with both local and overall 
imperfections, as described in Reference 2-4. Let th,: Local inpcrfection be 

measured by the midspan deflection amplitude 8 of one bay IC ‘i of longeron, 
and let r be the radius of gyration of the cross-secti area of the 

longeron. Then, tha local imperfections are assumed to be 
9 

6 - P 0.316 r 
g 

(2-39) 

Furthermore, let the overall imperfections be measured by the midspan 

deflection amplitude A of the entire column, and note that the radius of 

gyration R of the cross-sectional area of the entire column is R/fi, where R 

is the radius ot the column. The overall imperfection amplitade is then 

regarded as dependent upon the overall column sl.?nderness ratio 

g 

where 

R P =  T; 

and L is the overall column length. In particular, let 

-6 -2. 4.72 x 10 6 , $ < 0.017 

3.58 x 10-5$-3’2t B 2 0.017 

A 
R 

(2-40) 

(2-41) 

This choice of A reflects two separate concerns, and A is chosen as the worst 
case of the two considered sources. First, for $ < 0.017, Eq. (2-41) reflects 
midspan deflection due to an assumed variation of the coefficient of thermal 

expansion of Aa - 0.1 x 10-6/K in longeron material, combined with an assumed T 
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temperature change of I\T - 100 K with the column oriented in a worst-case 

direction. The longerons are assumecr to have length L with A = 0 at the 
rsierence temperature. Then, after the temperature change AT? one longeron is 

aseumed to have expanded more than the other two, and the overall column 
length is assumed to be the average of the final lengths of all three 

longerons. The A is then calculated as the midspan deflectio.3 of the 

resulting circular arc shes of the overall column. 

The case when 6 2 0.017 in Eq. (2-41) is based on an analysis of expected 
rms surface deflections in a simply supported planar truss made of straight 

members with imperfect initial lengths. The analysis, presented in Reference 

2-5, is used where it is assumed that the standard deviation of errors in 
member lenS..hs (a ) is loo5, and (&/It) - 1.25 and (R/H) - (2/3). The 
resul Ing rms deflection was used to identify that parabola of midspan 

deflection I\ with the same rms value. 'The resulting value t,f A was then 

multiplied by a factor of three. The result of this process is reported in 

Eq. (2-41). 

E 

Column designs were then determined from the equation 

where 

h AIRg 
h ;  I\* = -10 2 2 -2 6 - r  9 

'b 
1 - 7.55 x 10 l a b  L $ 

A = - ;  
pa 

'E -10 2 2 -2 x* = - (1 - 7.55 x 10 w L $  ) 
*a 

where 

(2-42) 

(2-431 

(2-44) 

= column buckling load 

= local buckling load of one bay length of column - Euler buckling load of overall length of cohmn 

'b 

pa 
'E 
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w = satellite spin rate (radians/second) 

= empirical coostants determined f r a  detailed imperfection 
analysis co ,cl 

Equation (2-42) was determined as a siqlified empirical fit to the numerical- 
quadrature-determined results presented in Reference 2-6 for the effects of 
d i n e d  local and overall imperfections on the buckling load of lattice 

coluans. The effects of satellite spin are included in the parameters x* and 

A*, vhich reduce to static (nonspinning) values when w - 0. These spin 

corrections were determined f t a  the analysis presented in Reference 2-4 by 

including an additional inertia load term in the gowerning nonlinear 

differential equations and then redefining the effective Ps and A in the Ritz 
solution so as to absorb the additional spin-dependent terms. 

By careful examination and curve fitting of the data presented in 

Reference 2-6 for the buckling loads in the case where 6/r = 0.3, the 
constants Co and C1 are assumed as 

g 

Co = 1.4 a + 0.14 

C1 = 0.135 A* + 0.275 
(2-45) 

Equation (2-4’) may be used to estimate the buckling load Po of a lattice 
mlulll with combined local and overall imperfections while spinning with 

angular velocity w. The column is then designed by requiring 

(P.S) P = Pb (2-46) 

where F.S. = Factor of Safety = 2 in this design, and P is canpression load in 
the column. 

Equations (2-41) through (2-46) provide a set of simultaneous nonlinear 
algebraic equiitions for $, assuming that 

C - = 0.006 R (2-47) 



where r is the longeron radius. Equation (2-47) is a packaging constraint 

which avoids longeron damage due to excessive strain in the stowed 

configuration. It is further assumed that 

= 1.25 (2-48) 
a 
R 

where a is the length of one bay along the co~umn length. 
material be graphite/epoxy composite with 

Let the longeron 

E = 1.245 x loi1 N/m2 

P = 1520 kg/m3 
(2-49) 

Presented in Table 2-2 are the resulting design parameters for a truss 

colum! with m i n e d  local and overall imperfections. Note that the column 
masses are much larger than those presented in Table 2-1 for the inflated 

cylindrical column. 

2.6.2 Design of a Ferfect Truss Colrm 

In this section we investigate the extent to which the excessive column 

masses obtained in the preceding section for an imperfect column may have been 
caused by the effects of imperfections. In this design, it is again assumed 
that 

(f) = 0.006 t (r) = 1.25 

EOwever, the buckling strength of the column is determined by 

where 

2 2 2  P* = P ( l -  w a h  pE ) 
E E 

(2-50) 

(2-51) 

!2-52) 
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where Pb, PE, and Pg are as defined i n  the pr-ing sec t ion ,  and II is the 
rass per u n i t  length of the column. The e f f e c t s  of satellite spin rate are 
included i n  the e f fec t ive  Pi of Bq. (2-52), as previously dtscusscd. 

Thc colum design is then determined f r a  the requirereit that 

(F.S.) P = Pb (2-53) 

where (P.S.) = Factor of Safety = 2. U s i n g  the same material properties as 
those considered i n  the preceding section, ue obtained the  column designs 

presented i n  Table 2-3. Note that while the rasses of the resu l t i ng  perfect 
colums are s l i g h t l y  smaller than tbost of the corresponding imperfect colums 
of Table 2-2, the raases are still excessive i n  -ison w i t h  the i n f l a t e d  
columns. mte also that in every case except one the  design is gmerned by 

Pi, and the excessive rasses are therefore  caused by the  i n e r t i a  effects of 
satellite sp in  rate. 

2.6.3 Design of a Weight, Ferfect hprrs colrm 

Presented in this sec t ion  are the r e s u l t s  of an invest igat ion of the 

e f f e c t s  of reliewing the cons t r a in t  that r/R = 0.006. Instead, designs are 
detemined according to the minimum weight condi t ion that 

(2-54) 

where Pg is given by Bq.  (2-52). I n  t h i s  case, r/R is regarded as an 
independent variable. However, Eq. (3-54) determines r/R i n  terms of B, o, L, 
etc. The column design condition is then 

(P.S.) P = Pa 

where, again, F.S. = Factor of Safety = 2. 

(2-55) 

Table 2-4 presents the results of t h i s  ,dsign procedure, where it is 

observed t'rat r/R<0.006 - i n  a l l  b u t  one case so t h a t  the  packaging reqtlirement 
is s a t i s f i e d  for a l l  b u t  one of these designs. 
savings i n  total column mass is real ized,  espec ia l ly  for  the shallow reflector 
designs where (F/D) = 2. 

Furtherrare,  a subs t an t i a l  
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One of the special problems associated with a spin-stiffened satellite is 

that  of overcaaing the la rge  angular momentum during a t t i t u d e  con t ro l  
maneuwers. One approach to this problem is to add a l a rge  counter-rotating 
flywheel to n u l l i f y  the angular momentum of the reflector and obtain an 
o v e r a l l  configuration w i t h  zero n e t  angular momentum. The added f lywhee l  

r i g h t  na tu ra l ly  be positioned on the c e n t r a l  coe~preesion column behind the 

reflector, as shown i n  Figure 2-6. 

I n  this configuration, the flywheel-reflector pair might behave as a pair 

of control-aolPent gyroscopes (CMG) for e f f i c i e n t l y  providing a t t i t u d e  con t ro l  
and maneuvers of the e n t i r e  satellite. The required l a rge  flywheel could be 

deployable and made i n  an isotensoid configuration of high s t rength fibers, as 
described i n  Reference 2-7. However, t he  i n t e n t  here is not to explore the 
details of the design of such a con t ro l  system, but rather t u  explore the 

effects such a system might have on the c e n t r a l  compression column. 

For a c e r t a i n  useful  range of design parameters, a l a rge  flywheel con t ro l  
system might have the  local effect of 'clamping' the base of the c e n t r a l  
column as  i f  cant i levered froaa a f ixed point  i n  space. The fundamental 
vibrat ion mode of the o v e r a l l  spacecraft i n  this case might resemble that of a 
cant i lever  beam-column (representing the f l e x u r a l  behavior of the s t i f f  

c e n t r a l  column) with an added t i p  mass (representing the rocking behavior of 
the spinning reflector i n  the r i g i d  body mode;, as shown schematically i n  
Figure 2-7. 

An analysis  of the system shown ii: Figure 2-7 with  parameters chosen to 
f i t  the  i n f l a t e d  cy l ind r i ca l  column designs of Section 2.5 reveal t ha t  the 
combined effects of the  t i c )  mass and relaxed (cantilevered) boundary 
conditions lower t h e  fundmental  v ib ra t iona l  frequency w e l l  below the 
satell i te spin rate w. The results of t h e  analysis  are shown i n  Table 2-5. 

I t  is thus concluded t h a t  none of the in f l a t ed  column designs presented i n  
Section 2.5 is s u f f i c i e n t l y  stiff to avoid w h i r l  i n s t a b i l i t y  i n  a direct way. 

A single-term approximation to  the  fundamental frequency of the system 
shown i n  Figure 2-7 is given by 
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\ Counter-rotating 
flywheel 

Figure 2-6. Counter-rotating flywheel attitude 
control system for spinning reflector 
spacecraft. 106A 
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Figure 2-7. cantilevered beam-column with t ip  mass 
model for fundamental vibration frequency 
of satell . i e  in Figure 2-6. 107A 
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p - m  
% ' J  + 0.236 r$ 

(2-56) 

Solving Eq. (2-56) for EI,  replacing w with the spin rate w, and including a n 
safety factor, we obtain the following design requirement for the central 
column 

L -I 

(2-57) 

Considering the inflated cylindrical column with fixed gauge thickness t 
described in Section 2.5, and using the same material properties and 
pressurant conditions with a F.S. = 2,  we used Eq. (2-57) to determine design 
parameters for an inflated cylindrical center column which is consistent with 
attitude control philosophy previously described. The results of this design 
procedure are presented in Table 2-6, Comparing the c o l m  masses presented 
in Tables 2-1 and 2-6, we can see that it is apparent that the control 
approach shown in Figure 2-6 results in an approximate three-fold increase in 
the column mass. 

The effects of alternative attitude control schemes were not exantined. 

Another of the special problems encountered in a spin-stiffened satellite 
is that of the dynamic stability of the free flying spinning vehicle. It is 
well known that a free flying spinning vehicle is stable ohly when spinning 
about the principal axis of inertia associated with the largest mass moment of 
inertia. Since the subject spacecraft is intended to spin in a stable manner 
about an axis through the center tolumn, an evaluation of the moment of 
inertia about this axis Is (the spin axis) and also about an axis orthogonal 
to the column but through the mass center It (the tumble axis) was performed. 
The spinning spacecraft is then stable if Is is greater than I and unstable 
otherwise. 

t 
The results of the calculation are presented in Table 2-7. 
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TABLE 2-7. MASS MOMENT OF INERTIA RATIOS FOk SPINNING 
PARABOLOIDAL REFLECTOR SPACECRAFT* 

*Is = sp in  axis i n e r t i a  

It = tumble ax is  i n e r t i a  

Column d e s i g n s  t a k e n  from Table  2-6. 
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Clearly, the cases where (.?ID) - 1 and 2 require additional mass around 
the outer rim of the reflector to provfde dynamic stability of the spinning 
spacecraft. No calculatton of the magnitude of the required aass was 
performed. 
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The design procedures used to  develop the  dimensions a n ~  masses of 
spacecraft s t r u c t u r a l  colponents for a truss-supporced paraboloidal reflector 
spacecraft are reported i n  this section. Resul ts  are presented for support  
s t r u c t u r e s  with deep t r u s s  design and also for a geodesic -/stiff perimeter 

ring configuration. A tripod t r u s s  s t r u c t u r e  is designed to support  the 

e l ec t ron ic  payload located a t  the  feed of the  paraboloid i n  each case. 

Consider a deep t r u s s  i n  the shape of a paraboloid, as shown i n  Figure 
3-1. The t r u s s  has nominal depth E, and the r e f l e c t i v e  surface is composed of 
n a i n a l l y  e q u i l a t e r a l  t r i angu la r  f a c e t s  of length a, as Shawn i n  the figur?.  
A r e f l e c t i v e  r e sh  or Pembrane is stretched and supported along the upper 
surface of the t rus s ,  while the lower surface does not  support  a mesh. The 

in t e r f ace  between the mesh and t rus s  occurs only a t  the t r iangular  lattice 
nodes. Separate tendons under high tension are laced through the mesh along 
L n e s  parallel to the  surface t r u s s  elements and attached a t  t h e  nodes. The 

t r u s s  members therefore must car ry  only a x i a l  canpression and tensiorl and can 
thus be slender  for l i g h t l y  loaded s i tua t ions .  Properly located j o i n t s  allow 

stowage and deployment of the otherwise uncolnpliant Structure. P ~ o m  an 
overa l l  standpoint,  the  tetrahedral trLss structure car1 be thought of as a 
t h i c k  s h e l l ,  the surface of which is defined by the lattice nodes. For the 

equ i l a t e ra l  t r iangular  geometry shown, t h e  s h e l l  is iso t ropic ,  an advantage 
that does not  obtain for some other truss geometries. 

L e t  t h e  edge tension i n  the mesh be isotropic w i t h  a mit  value of N 

Newtons per meter. Then, assuming a tenfold amplif icat ion of tension loads i n  
t h e  andons,  w e  obtain t h e  induced compression i n  a typ ica l  truss member near 
t h e  perimeter of t h e  truss 
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1G Na P = -  (3-1) 

Furthernmre, let each truss member be a thin-walled hollow tube w i t h  wall 

thickness t and designed to carry the compression load P as an Euler column 
with a factor of safety of P.S. Then, as s h m  in Reference 3-1, the 
resulting diameter to length ratio of the member is 

v3 8 P.S. 
a (3-2) 

where E is the modulus of elasticity of the tube material. 

Substituting frorn Eq. (3-1) into Bq. (3-2), we find the truss member 

slenderness ratio to be 

1/3 d 80 F.S. 
a 
- -  (3-3) 

The strut length R may be determined by limiting the rms deviation 

between the flat mesh facets and the desired paraboloidal surface to be less 

than some predetermined value. Since the rms deviation decreases with R, it 

is possible, at least in principle, to meet any arbitrarily demanding surface 
accuracy requirement by simply reducing R sufficiently, thereby increasing the 
number of facets in the approximating mesh surface. 

Let wrmS be the rms deviation just described, let D be the diameter of 
the reflector, and ler F be the focal length of the desired paraboloid. Then, 

it may be shown (Ref. 3-1, p.161) that the required strut length R for a given 
allowable rms deviation is given by 

D (3-4) 

For the tetrahedral truss, the total mass of the truss structure is 

independent of II, however. In fact, it can be shown (Ref. 3-1, p. 169) that 

the structural mass per unit area of the tetrahedral truss is given by 
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mass 
area (3-5) 

where p is the mass density cf the truss material and k is a factor to account 

for the mass of the fittings. In addition, the SUfAdCe area A of the 
desired paraboloid amy be related to the frontal area of the reflector as 

follows : 

par 

(1.06011; F/D = 1/2 

1.01547; F/D = 1 

I 1.00390; F/D = 2 

Assuming a graphite/epoxy material for the truss members with 

E = 1.0 x 10l1 N/m2; P = 1520 kg/m 3 

and a fixed wall thickness of 

t = 0.35 m 

also a factor of safety of 

a fittings mass factor of 

k = 1.5 

and an allowable rms surface error of 

(3-6) 

(3-7) 

(3-8) 

(3-10) 

(3-11) 
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we may obtain the structural mass per unit area for tetrahedral truss designs 

given in Table 3-1. The truss depth H used in these designs is equal to the 
surface member length 11. 

3.1.1 Slenderness Re!qu iremenus 011 Truss Llerkrs 

The proposed truss member designs given in Table 3-1 were evaluated with 

respect to the slenderness requirements suggested in Reference 3-2. These 

requirements ensure that certain fabrication, testing, and assembly processes 

may be accomplished without seriously degrading the properties of the truss. 

For a thin-walled tube, the radius of gyration r of the cross section is 
Q 

related to the tube radius r by 

(3-12) 

Thus, the parameter of interest in Reference 3-2 is 

(3-13) 

For all designs given in Table 3-1, it can be shown that 

a - = 235 d 

so that 

665 a - =  
L 
9 

(3-14) 

(3-15) 

3.1.2 Requirement1 - Horizontal Testing 
To accommodate standard structural testing of the truss members in the 

horizontal position in the Earth's gravitational field, it is shown in 

Reference 3-2 that the requirement on slenderness is 
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574 < -  a 
r a1/3 
- 
9 

(3-16) 

for the materials and wall thickness used in Table 3-1. A check of L\e 

designs presented in the table for D = 100, l,OOO, and lO,OOO m reveals that 
all designs fail this requirement. 

3.1.3 Requ irement 2 - Vertical 'Pestis 
This requirement for standard structural testing of the truss members in 

the vertical position in the Earth's gravitational field is based on the 

criterion that tension load induced by the weight of the member should not 

exceed one-tenth of the Euler buckling load of the member. As shown in 

Reference 3-28 the corresponding requirement on slenderness is 

a 2700 - < -  
r &1/2 9 

(3-17) 

Evaluating the designs of Table 3-1 for this requirement, we find that designs 

with all three (F/D) values pass this test whe 1 D = 100 m, but all fail for 

D = 1,000 and lC,OOO m. 

3.1.4 Requ irement 3 - Fabrication 'Iblerances 
Assuming a strain variation of A€ = we can see from Reference 3-2 

that this requirement on slenderness is 

All designs pass this test. 

(3-18) 

3.1.5 Requ irerent 4 - Built-In Loads Due to -r Length Brrors 

Assuming a variation in member iength of 0 = lo+, we find that the 

corresponding requirement that the remlting built-in member loads be smaller 

than one-tenth the Euler load is (Ref. 3-2) 

€ 
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(3-19) 

All designs fail this test, though not by an excessive margin. 

3.1.6 Requ irement 5 - Member Vibratioa Frequencies 
Requiring that the truss members be sufficiently stiff that their 

fundamental vibration frequency be at least three times the fundamental 
frequency of the assembled truss, we can see from Reference 3-2 that for m ms 
= 2, k = 2, and H = 

d 
the slenderness requirement is 

2260 a - =  
1: 
g 

(3-20) 

All designs pass this test. 

In summary, the proposed truss designs have ai-quate slenderness to 

provide a competent realizable structure, but testing the truss members in 

Earth's gravity field would likely present some special difficulties. 

3.2 DESIGN OF A GBODBIC WWB PARABOIDIDAL REPTSTOR 

Consider a geodesic dome in the shape of a paraboloid, as shown in Figure 
3-2. The geodesic dome behaves in the large as a membrane, and it can be 

viewed as the limiting case of a tetrahedral truss as the thickness €I is 
reduced to zero. It is simpler than the truss since only one surface of 

lattice elements is required. On the other hand, the membrane-like surface is 

very flexible unless the edge is supported by a stiff ring. Packaging and 
deploying the ring may present more difficulties than those presented by the 

more nearly uniform tetrahedral truss. The interface with the mesh is again 
assumed to be at the lattice nodes, and the structural members carry axial 

tension and compression only. 

All strength and surface accuracy requirements presented in the previous 

section for the tetrahedral truss also apply to the geodesic dome. However, 

the unit mass of the dome structure is much lighter than the tetrahedral truss 

and is given by (Ref. 3-1, p. 168) 
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Figure 3-2. Geodesic dome configuration. 
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Inass 
area (3-21) 

Assuming all material properties, strength, and accuracy requirements for 

the geodesic dome are identical to those used for the tetrahedral truss 

desisns, we obtain the results presented in Table 3-2. Although the unit 

masses report* in Table 3-2 for the geodesic dome are much smaller than those 
reported in Table 3-1 for the tetrahedral truss, the two figures are not 

directly comparable since the geodesic dome structure is not stiff enough to 

be useful until a stiff ring is added around the perimeter of the dome. Thus, 

the unit mass of the required ring stiffness must be added to the unit mass of 
the dome before a direct compaiison with the tetrahedral truss can be made. 

The design of this ring stiffener is reported in the next section. 

Presented in the Appendix is an analysis of the free vibrations of a 
shallow spherical membrane dane. In particular, the fundamental frequency of 
vibration of the dome with a clamped circular edge is obtained. Also obtained 

is the first nonzero vibration frequency of a dome whose edge is supported by 
a ring stiffener with isotropic bending stiffness EI. The ring stiffener is 

assumed to be inextensible. 

The design of the ring stiffener is based on the analysis presented in 

the Appendix, The philosophy behind the ring design is that the ring should be 
stiff enough that the fundamental vibration frequency of the ring-stiffened 

dome is equal to the natural frequency of a dome with clamped eged. Clearly, 

any additional ring stiffness is not useful since it cannot further increase 

the natural frequency of a stiffened dome. Based on this approach, the 

required ring bending stiffness is given by 

where 

3-10 
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a = radius of sphere (approximately 2F) 

t = effective thickness of membrane dome 

E r: iao2trlus of elasticity of dome and ring 

D = reflector diameter 

mr = total mass of ring 

ms = total mass of dome 

The results presented i.1 Eq. (3-22) for a spherical membrane dome may be 
adapted to the paraboloidal geodesic dome truss by setting 

a = 2F 

and by choosing an effective Et for the truss as (Ref. 3-1) 

2 =s 
% -- 

Eteffective 6 a 

where 

(3-23) 

(3-24) 

As = cross-sectional area of a dome truss &ember 

a = length of a dome truss member (Figure 3-2) 

L;,: the ring be constructed of three longerons in an equilateral 

triangular configuration as shown in Figure 3-3. The cross-sectional area of 

each longeron is assumed to be Ar, and the "radius" of the triangular 
stiffener cross secticn is R. Then it follows that the ring bending stiffness 

is 

(3-25) E1 = 2 3 EArR2 

The mass of the ring stiffener may be estimated as three times the mass of the 
longerons. Thus, 
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Figurc 3-3 ,  Cross-sectional view of r i q  cti’ffener a*ld 
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I = 9npDAr (3-26) r 

The mass of the dune may be obtained from Eq. (3-21). Tnen 45. (3-21) and 

(3-26) give 

(3-27 ) 

where t!!e value of (ED) depends on (E'/D) as given in Eq. (3-4). 

SubstitLLI.:g from Eqs. (3-23) through (3-27) into Eq. (3-22) and using 

the material properties given in Eqs. (3-7), we find the relation between the 

required ring cross-sectional radius R ant3 the longeron cross-sectional area A 
is 

f 

(3-28) 

Requiring in addition to Eq. (3-28) that the axial stiffness of the ring 
be ten times the axial stiffness of a dome truss member (in order that the 

ring behave iri an essentially inextensional manner), we obtain the additional 
constraint 

(3-29) 

Finally, substituting from Eq. (3-29) into Eqs. (3-27) and (3-28), we 

obtain the rim mass and radius. 

Presented in Table 3-3 are the resulting design characteristics for the 
ring stiffener. Note that in every case, the rim mass is smaller than the 

dome mass. 

The equations for the unit mass of the tetrahedral truss and geodesic 

dome support structures, in terms of the mesh tension, are 
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TABLE 3-3. RING-STIFFENER DESIGNS* 
(dome mass not included). 

(F/D) I k/D A,/A, %/ms I R/D 

1/2 0.0176 3.33 0.406 0.156 

1 0.0249 3.33 0.575 0.0685 

2 0.0352 3.33 0.813 0.0304 
8. 

*Material parameters: E = 1.1 x 10l1 N/m2, 
p = 1520 kg/m3, k = 1.5, (wms/D) = 10-5 
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(3-30) 

f o r  t he  t e t r ahedra l  t r u s s ,  and 

for the dome, where 

1.06011; F/D = 1/2 

1.01547; F/D = 1 

1.00390; Fiij  = 2 

(3-32) 

and where t h e  t r u s s  loading of Eq. (3-1) has been assumed, and also H = a-  As 

discussed i n  Section 3.3, the area ratio (A,/As) = 10/3 w a s  assumed i n  the 

design of  t h e  ring s t i f f e n e r  f o r  t h e  dome. 

I f  t h e  material properties, w a l l  thickness,  factor of sa fe ty ,  and f i t t i n g  

mass f ac to r  values used i n  Tables 3-1 and 3-2 are used, the u n i t  mass of both 

s t r u c t u r e s  may be regarded as dependent upon the assumed mesh tension N 
through the  r e l a t i o n s  

124 N1/3; F/D = 1/2 

F/D = 1 Tetrahedral  Truss  

117 N1l3; F/D = 2 

1/3. 

1/3. 

39.2 N , F/D = 1/2 

37.6 N , F/D = 1 Geodesic Dome 
(without r ing ) 

37.1 N1l3;  F/D = 2 

(3-33) 

(3-34) 
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Mass F/D = 1 Geodesic Dome 
+ Ring Stiffener 

(3-35) 

where the unit mass values have units of grams per square meter when the mesh 
tension N is expressed in Newtons per square meter. 

A plot of these unit masses vs. mesh tension is shown in Figure 3-4. 

In order to complete the truss reflector design, a tripod made of 

lightweight columns is required to extend fran the rim of the reflector up to 

the focal point of the paraboloid, as shown in Figure 3-5. The three 

identical columns are located at points equidistant around the reflector rim, 

and each has length L where 

(3-36) 

where D is the diameter of the reflector rim, and F is the focal distance of 
the paraboloidal reflector. 

Let each column of the tripod be made from three identical longerons 

arranged to form an equilateral triangle in cross section. Furthermore, let 

this triangle be sized such that the longerons will intersect the reflector 

truss at three adjacent joints on the reflector surface, as shown in Figure 
3-6. Thus, the required batten length is the same as the length of the 

truss members which form the equilateral triangular facets on the reflective 

surface of the truss. 

Also, let the column longerons be composed of equal bays of the same 

length a. Then the column may be composed entirely of members identical to 

those used to form the reflective surface of the truss, except foz the cross 
bracing necessary to provide shear strength. The cross bracing will be 

assumed to consist of pretensicned fibers not capable af sustaining 

compression and therefore will be extremely lightweight in comparison with the 
compression members in the column. 
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Tetrahedral truss 

- -- Geodesic d o m e  (with ring) 

- - - - - Geodesic dome (without ring) 

I I I I I I I 1 1  I I 1 I I I I I  
1 

Figure 3-4. Unit mass vs.  m e s h  tension for truss support 
structures (not including mesh itself), solid 
tube designs (t = 0.35 m, graphite/epoxy), 108A 

3-18 



I/-Paraboloidal feed location 

Lightweight truss columns 

Paraboloidal 
ref lector 

\ 

Figxe 3-5.  Tripod feed suppcrt structure. l l O A  
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F igu re  3-6. Tripod c o h m n / r e f l e c t o r  s u r f a c e  i n t e r f a c e .  
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Choosing column compression members with length, diameter, wall 

thickness, and material properties identical to those used for truss members 

in the reflector surface, the strength and flexibility coefficients of the 
resulting tripod are presented in Table 3-4. The buckling loads presented in 

Table 3-4 are for axially loaded individual columns, while the flexibility 

coefficients are for a complete tripod assembly assuming a rigid reflector. 

The mass of the tripod may be determined from 

(y) = 144 kpt (E) (g) 
I ~ D  /4 

(3-37) 

where k is a factor intended to account for added masses from joint fittings 

and diagonal bracing. For the tripod masses presented in the table, k was 
assumed to be 2. 

Since the total spacecraft unit mass in the tetrahedral truss 

conf igaration is quite large in comparison with available alternative 

configurations, an investigation of the effect on the unit mass of considering 
inflated truss members instead of solid tubes was performed. In this 

investigation, the column compression loads P and lengths a were chosen from 
Table 3-1 to be identical to those used in the solid tube design. The 
inflated strut design was assumed to be a circular cylinder with fixed gauge 

m, and material of axial fiber- th’7kness of t = 1 mil = 2.45 x 10 

reinforced mylar skin. The pressurant was assumed to be N at 300 K. The 2 
buckling strength is proportional to the modulus of elasticity of the graphite 
fibers, which was assumed to be 2.21 x lo1’ N/m . The mass density of the 

mylar skin was taken as p = 2080 kg/m2, while that for the fibers was pf = 

1750 kg/m . A factor-of safety against mler buckling of the struts was 

chosen as 2, as was the fitting mass factor. 

-5 
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Under these assumptions, the reflector-ocly unit masses were found to be 
approximately 130 gm/m for all three considered (F/D) values for the geodesic 
dome configuration and approximately 400 gm/m2 for the tetrahedral truss 

configuration. Since these unit masses are much larger than those reported in 

Tables 3-1 and 3-2 for solid tube designs, no further consideration was given 

to the inflated strut concept. 

2 
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SECTIcm 4 
MAGS AND cawpARIsoN OF DgSIGNS 

Presented in this section is a summary of the unit masses for 

paraboloidal reflector structures obtained by three very different design 

approaches. These approaches include (1) An entirely inflated membrane 

configuration, (2) a spin-stiffened configuration, and (3) A truss-supported 

configuration. The spin-stiffened and truss-supported configurations are 

described in more detail in Sections 2 and 3 of this report whereas the 

entirelk inflated configuration is described in a previous report (Ref. 4-1) 

and is described briefly in what follows. 

Also presented herein is a discussion and comparison of the strengths and 

weaknesses of the three bpsic design configurations. 

Consider an inflated paraboloidal reflector consisting basically of a 

Saraboloidal membrane surface joined at its outer rim to a conical membrane 

surface as shown in Figure 4-1. The conical membrane is assumed to be 

transparent to the radiation of ir.terest while the paraboloid is coated with a 

reflective material. P.s. discussed in Reference 4-1, the tension fields 

induced i n  the merjbrane surfaces due to internal pressurization and the abrupt 

change in Cirection of these tension forces at the rim (cone/paraboloid 

junction) necessitate special. attention to load transfer at the rim. 

Specifically, to avoid the development of substantial wrinkle regions in the 

parapaloid near the rim, a separate compression-carrying rim structural 

component is necessary. For the design developed in Reference 4-1, this 

compression rim was considered to be a segmented ring composed of many shcrt 

segments, each of which is straight. Furthermore, each rim segment was 

assumed to be a separately inflated (nonc!ylindrical) isotensoid column as 

shown in Figure 4-2 and discussed in Reference 4-1. Attachment between the 

rim and membrane surfaces occurs o ~ l y  at the junctions between straight rim 
segments as shown in Figure 4-3. Load transfer between the membrane surfaces 

and rim is provided by a sca1.loped arrangement of arched edge tendons which 
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Figure 4-1. Geometry of cone-paraboloid reflector 
spacecraft. 112A 

4-2 



€ ' = i n t e r n a l  

Figure 4-2. Pressurized i s o t e w o i d  s t r u t  used i n  segmented compression 
r i m  of in f l a t ed  cone/paraboloid r e f l e c t o r .  1 1 3 A  
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Figure 4-3. Detail  of lo?. . .>ath between membrant and r i m  attackiinent 
points for ;.# :ed r e f l ec to r  configuration. 1 1 4 A  
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are bmded directly to the edge of the membrane and made of the same material. 
Leakage of pressurant at the rim is prevented by a (nonstructural) billwing 

bladder. 

The design of this inflated configuration was governed by setting tire 

maximum edge loading in the membrane surfaces equal to an arbitrarily chosen 
predetermined value of 20 N/m, corresponding to a maximum working stress of 

1 x 10 N/m in a membrane of thickness 2 x m. For a material of Kapton 

polymer film, the working stress is well below the ultimate strength of the 

material, but prolonged loading at higher stress levels may cause significant 

creep . 

7 2  

As a result of setting the maximum edge tension to a predetermined value 
under static pressurization, the necessary internal pressure and variation in 

membrane stLesses over the surface may be obtained. It is found that the 
maximum membrane stress always occurs near the reflector rim and that the 

m?mbrane stresses near the apex of the cone (feed of the parabolaid) are 

always zero regardless of the amount of internal pressure used. The pressurant 

was assumed to be N2 at 700 K. 

Next, the forces in the arched edge tendons ~ e ~ 2  determined from an 

assumed circular arc geometry of the tendons. From these edge tendon forces, 

the caapression force carried by each rim segment was inferred. The edge 
tendons are sized by assuming that they are made of the same material ab the 

membrane and that they have the same working stress. The rim scgments are 

designed on the basis of an analysis of the buck1ir.g load of individuai rim 

segments, assuming a safety factor of two and ignoring the effects of initial 

imperfections in the column. The pressurant used in the inflated isotensoid 

column segments is N2 gas at 300 K. The column reinforcing naterial was chosen 
3 

as Kerlar 49 fiber with density p 

x 10 N/m . 
= 13tiO kg/mJ and working stress of 3 f t = 6.9 

8 2  

The mass of each major structural component of the inflated reflector 

spacecraft is reviewed in the following paragraphs, and for the particalar 
(F/D) values chosen, numerical results are presented in Table 4-1. 
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TABLE 4-1. COMPARISON OF STRUCTURAL MASSES OF THREE PllRABC)LOIDAL 
REFLECTOR SPACECRAFT CONFIGURATIONS. 

CONFIGURATION AND COMPONENT 

Inflated Configuration 

Membrane 
Fressurant 
Deep-arc tendons 
Inflated isotensoid rim 

Total 

Spinning Configuration 

Membrane 
Outer rim mass 
Front and back stays 
Inflated center column 

Total 

Total with control-designed column 

Truss Configuration 

Tetrahedral truss 
Mesh/membrane 
Tripod 

Total 

Geodesic dome 
Ring stiffener 
Mesh/membrane 
Tripod 

Total 

?/D = 1/2 

9.53 
0 -0505 
0.514 
2 -06 

12.2 
- 
- 

4.24 
0.298 
0.00746 
0.169 

4 -71 

5.12 
- - 
- 

124 
4.24 
6.14 

134 - - 

39.3 
16.0 
4.24 
6.14 

65.7 
- 
- - 

F/D = 1 

12.8 
0 -0706 
0 - 527 
2.06 

15.5 
- 
- 

4 -06 
0.200 
0 -00596 
0.550 

4.82 

5.91 

- 
- - 
- 

119 
4 -06 
11.1 

134 - - 

37.7 
21.7 
4.06 
11.1 

74.6 
- 
- - 

F/D = 2 

20.4 
0.0737 
0.488 
2.06 

23 .O 

- 
- 

4.02 
0.181 
0.00568 
3.53 

7.74 

14.01 
- 

117 
4.02 
25.4 

146 - - 

37 -1 
30.2 
4.02 
25.4 

96.7 
- 
- 
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4.1.1 W K a W  

The membrane mss is the product of the total surface area of membrane 
material, the membrane thickness, and the mass density. Thus, 

'membrane M (4-1) 

where 

A = membrane surface area, (-D') 

P = mass density 

t = membrane thickness 

3 3 For the results presented in Table 4-1, p = 2 x 10 kg/m and t = 2 x m. 

The term A is a function of (F/D) as given in Eq. (2-5) of Reference 4-1. 

4.1.2 Pressurant 

The pressurant mass is the product of the mass density p of the 

pressurant and the total volume of pressurant. However, for N2 at 300 K, the 

mass density is proportional to the pressure which, in this design, is 
proportional to the maximum allowable edge tension Tmax in the membrane. Thus, 

PV 3 Tmax D2 

where 

= maximum allowable edge tension Tmax 
3 V = volume of pressurant, -D 

(4-2) 

F O ~  the results presented in Table 4-1, Tmax = 20 N/m. The terms V and P are 

functions of (F'/D) through Eqs. (2-7), (2-8), (2-16), and (2-17) of Reference 

4-1. 
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4.1.3 Deep-Arc Tendons 

The tendon mass is the product of the  mass densi ty  p, t he  total tendon 
length L, and the cross-sect ional  area A. However, t he  required cross- 
sec t iona l  area for a given workin,- stress (3 may be related b a c k  to the  

allowable edge 

'tendons 

where 

tension T-. Thus, it may be shown that  

s TnaxD'p 
U (4-3) 

= maximum allowable edge tension 
TmaX 

U = working stress i n  tendons 

P = mass dens i ty  of tendons 

The mass is also dependent on the  ratio (F/D) through Eqs. (2-201, (2-27), (2- 
3 

28), (2-7), and others. For the r e s u l t s  presented i n  Table 4-1, p = 2 x 10  
7 = 20 N/m, and (1 = 1 x 10 N/m. 3 

k9/m P Tmax 

4.1.4 Inflated Rim 

The mass of the in f l a t ed  r i m  is the  product of the o v e r a l l  mass densi ty  
of t h e  wa '1  and pressurant  of column material and the  voluae occupied by the  

in f l a t ed  rim as given i n  Eq. (2-61) of Reference 4-1. The parameters are not  
involved i n  a simple manner, and no attempt w i l l  be made here to parameterize 
these r e s u l t s ,  except that 

'rim s PD s T ~ ~ ~ D ~  

where 

= maximum allowable edge tension 
TmaX 

(4-4) 

The value of Tn,ax used to obta in  the results presented in  Table 4-1 is 20 N/m. 
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4.1.5 Sttenqths and Weaknesses of the Desiqn 

Compared with the other configurations, it is seen that the inflated 

spacecraft is much lighter than the truss spacecraft but not as light as the 

spinning spacecraft. The inflated spacecraft has the potential advantage of an 

obvious and reliable deployment mechanism and a potentially high packaging 

efficiency. 

Potential disadvantages of the inflated configuration include leakage of 

pressurant and susceptibility ta meteoroid puncture, inherently low stiffness 

of the membrane wall near the apex (feed) of the cone, and potentially large 

errors in surface accuracy. 

A detailed discussion of the design procedures used to develop the 

dimensions and masses of spacecraft structural components for the spinning 

configuration are given in Section 2 of this report. Consequently, wbat 

follows is a review of the parameters which affect the mass of each major 

structural component. Numerical values are presented in Table 4-1 for 

canparison with other configurations. 

4.2.1 llerbrane 

The mass of the membrane surface is the product of the mass density p, 

the membrane thickness t, and the surface A. Thus, 

'membr ane (4-5) 

3 3 For the results presented in Table 4-1, p = 2 x 10 kg/m , t = 2 x m, and 

A is the sum of paraboloidal and cmical areas which depend on (F/D). 

4.2.2 Outer-Rim Uass 

The mass of the ocrter rir. is the product of the circumference liD of the 
rim and the lineal mass density of the added rim mass. Thus, 

A 

= mnD Mouter rim 

4-9 
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Prom Eqs. (2-21) through (2-24), we find that 

A 

S N e (r = D/2)/u2 (4-7) 

2 Howeverr N and o are not conveniently parameterized. It may be shown that e 
N ptD2 

s %dX 

'outer rim N + N fl 
%in %lax 

(4-81 

where 

= arbitrarily chosen maximum N at t = 0.2 D 0 N 
4max 

= arbitrarily chosen minimum N at r = 0.2 D N 
'nin 0 
P = mass density of membrane 

t = membrane thickness 

= 5 N/m, N = 0.85 N/m, p = 
h X  bin For the results presented in Table 4-1, N 

2 x 10 kg/m3, and t = 2 x m. 3 

4.2.3 Pront and Back Stays 

The mass of the front and back stays may be characterized as 

p N  
s 4max 

Mstays U 

where 
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P = mass density of stays 

U = working stress of stays 

= arbitrarily chosen maximum N at r = 0.2 D 4J N 
4JlUX 

= 5 N/m, p = 1380 kg/m3, and (3 = 
h X  

For the results presented in Table 4-1, N 

6.9 x 10 H/m for a stay material of Kevlar 49. 8 2  

4.2.4 Inflated Center Colum 

TSe mass of the inflated center column is given by Eq. (2-34). It is not 

easily parameterized since it is dependent upon numerical solutions to a cubic 

equation for the required mlumn radius r. 

4.2.5 Strengths and Weaknesses of the Design 

From Table 4-1, it is observed that the spinning configuration is 

significantly lighter than any of the competing configurations. Another 

potential advantage is that the centrifugal force may be used in a reliable 
deployment mechanism. 

The spinning configuration presents a number of potential disadvantages 

which are inherent by products of rotrtional motion. First of all, the 

angular momentum of ir large rotating spacecraft is quite large and provides an 

impediment to maneuvers which require significant motion of the axis. As 

previously discussed, it may be necessary to add a large counter-rotating 

flywSeel to cancel the spacecraft angular momentum and provide a means for 

attituie control. However, such a flywheel would amplify whirl instability 

considerations in the design of the central column, resulting in larger total 

spacecraft mass, as shown in Table 4-1, under the heading "total with control- 

designed column." In addition to angular momentum effects, the spacecraft 

must be dynamically balanced by adding masses in appropriate locations in 

order that the s.pin axis becomes the principle axis of inertia. As previously 

shown, the designs presented in Table 4-1 have not been dynamically balanced, 

and therefore additional masses will be required. Finally, the spinning 

configuration provides an opportunity for a plethora of dynamic instabilities 
which should be investigated. 
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A detailed discussion of the design procedures used to develop the 

dimensiors and masses of spacecraft structural components for the truss 

configurations are given in Section 3 of this report. Consequently, what 

follows is a review of the parameters which affect the mass of each major 

structural component. Numerical values are presented in Table 4-1 for 

comparison with other configurations. 

4.3.1 lWrahedral Truss 

The mass of the deep tetrahedral truss may be characterized as 

2 N1/3 t2/3 ~ 1 / 3  
M J- PD tetra (4-10) 

where 

p = mass density of truss member material 

N = edge tension in mesh supported by truss 

t = wall thickness of truss members 

E = modulus of elasticity of truss members 

3 2 For the results presented in Table 4-1, p = 1520 kg/m , E = 1.1 x 10l1 N/m 

for graphite/epoxy material, t = 0.35 mm, and N = 1 N. 

4.3.2 Geodesic Dae 

The mass of the simple geodesic dome may also be characterized by Eq. 

(4-10). 

4.3.3 R i n g  Stiffener 

The mass of the ring stiffener for the geodesic dome may be characterized 

as 

M f l -  E PD 2 N 1/3 t2/3 E-1/3 
ring (4-11) 
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where p, N, t, and E are as described above, and wrmS is the allowable facet- 
flattening error in the reflective surface. For the results presented in 

Table 4-1, wrms/D = lo-'. 

4.3.4 ~~ rane 

The mass of the mesh or membrane reflective surface supported by the 

truss may be characterized as 

(4-12) 2 s m'D Mmesh 

where m' is the mass per unit area of the mesh material. For the results 

presented in Table 4-1, m' = 4 g/m . 2 

4.3.5 Ripor3 

The mass of the tripod may be charact-rized as 

wh 

%. s N  1/3 t-1/3 E-1/3 
"tripod 

re N, t, E and (wrms/D) are as desc 

(4-13) 

ibed above. The value for these 

quantities which were used in constructing Table 4-1 are also presented above. 

4.3.6 Strengths and Weaknesses of the Design 

Both of the truss configurations are substantially heavier than the other 

two competing designs. Furthermore, the packaging efficiency and deployment 

procedures for each are not likely to be as favorable as those for the 

competing designs. However, the tetrahedral truss has a significant advantage 
in that precision design and fabrication procedures provide the opportunity 

for a relatively high surface accuracy. It may be that the dome structure is 
capable of a surface accuracy below that of the tetzahedral truss but above 
that of the other two competing designs. 
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4-1. Hedgepeth, J.M.; and Miller, R.K.: Final Report - A Study of 
Structural Concepts for Ultralightweight Spacecraft. Astto Research 
Corporation, ARC-TN-1114, 14 July 1982. 
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APPEND I X 
VIBRATIONS OF A SHALLOW DOME 

For a . s h a l l o w  s p h e r i c a l  come (r = a$) w e  can ignore  t h e  e f f e c t s  of in-surface 

a c c e l e r a t i o n  loads. We g e t  

= o  aNr 
ar r 38 r 

1 ;‘ONre + Nr - Ne - + - -  

r- aNO + a ( r 2 N r e )  = 0 
ae ar 

2 N + Ne = maw w r 
Rewriting g i v e s  

The f i r s t  two of t h e  equi l ibr ium equat ions are s a t i s f i e d  by r e l a t i n g  t h e  

stresses ta t h e  stress p o t e n t i a l  @, where 

a20 Ne = - -  2 ar 
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Manipu la t ing  t h e  second and t h i r d  s t r e s s -d i sp lacemen t  re la t  io i l s  y i e l d s  

where 

is  t h e  u s u a l  Lap lac i an .  

Taking t h e  Lap lac i an  of t h e  f i r s t  of t h e  s t r e s s -d i sp lacemen t  r e l a t i o n s  g i v e s  

2 2  - '+' V 2 ( N  + N6> + V w l-' V2(Nr + Ne) 5 - - E t  E t  r 

Thus 

V2 [w - &Nr a + Ne)]  = 0 

S u b s t i t u t i n g  from t h e  t h i r d  e q u i l i b r i u m  e q u a t i o n  f i n a l l y  g i v e s  

E i t h e r  

2 E t  
2 ma 

= -  

or 

2 v w  = 0 
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I f  we r e q u i r e  w = 0 a t  t h e  bcundary r = D / 2 ,  then no n o n t r i v i a l  s o l u t i o n  

exis ts  with a ze ro  Laplacian.  Therefore,  f o r  supported edges,  ‘I shal low 

s p h e r i c a l  (or  pa rabo lo ida l )  dome would e x h i ’ i t  many g i b r a t i o n  modes, a l l  having 

t h e  same v i b r a t i o n  frequency. 

If t h e  r i m  is  allowed t o  d i s t o r t ,  then o t h e r  f r e q u e n c i e s  are p o s s i b l e .  We 

would l i k e  t o  determine how s t j f f  t h e  r im-reinforcing r i n g  must be i n  o r d e r  t o  

e n s u ~ i ?  t h a t  t k e  o t h e r  f r equenc ie s  are h ighe r  than t h e  b a s i c  one above. 

Le t  t h e  deformption be  s i n u s o i d a l  around t h e  circumference; tJ-.at i s  

w = w cos ne n 

and so f o r t h .  

The nonsingular  s o l u t i o n  wi th  a ze ro  Laplacian i s  

w -  n 

In  terms of t h e  stress p o t e n t i a l ,  t h e  t h i r d  equ i l ib r ium equa t ion  g i v e s  

n 
v2@ = - m a w 2 w  (a) cos ne 

The gene ra l  s o l u t i o n  i s  

The stresses are 
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With regard to the u anc v displacements, note that 

Theref ore 

N -‘JNO 
+-- W r  at: 

ar d Et 
- I -  

Integrating, and noting that 1:(3,3) = 0 for 3 #  1, gives 

Similarly 

N -vNr a -  W 8 -u - r - + r - - _  ae a Et 
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Inasmuch as w e  are deal ing with a membrane, w e  iaii ist  ox2ect t o  enforce 

We musL, however, compat ibi l i ty  of edge de f l ec t ions  normal t o  t h e  membrane. 

requi re  t h a t  t h e  u and v de f l ec t ions  match tnose of a supporting r ing .  

L e t  t h e  u and v displacements at r = D/2 be 

u = U cos n9 

v = V s i n  ne 

Tht 

D 
2 (n+l) u + v  = 4+2(1-v) mLuL - -  

4 E t  
w 
a 
- 

ThUS 

(n+l) a u + v  
3-v m a L W L  

..a u w =  
--- 
4 E t  

Solving f o r  F gives  

r 

The re su l t i ng  edge stresses are 

Nr = E t  (n-1) (E - V I  + - n+ 1 u + v  2 2  +] cos n9 

1 3-v ma w 
4 E t  

--- 

i Cf Z L  3-v Ea u) 
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Let us write these in terms of radial, circumferential, and vertical - -  - 
3' coordinatcs u 1, u2, and u 

D - 
u = U + p J  1 

2 v =  U 

Then 

*r 
cos ne 

r - 
u - u  - -  1 2 2a 

2 2  m a w  
Et 

- -  

--- 
4 Et 

- Ring Stiffness Equations 

If we ignore torsion, the equations governtng the deforroations of an 
unpreloaded ring are taken from Reference 1-2 to be 

where 
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4 A = -  
D2 

- 
4 E I  4 E I  - ' n3 + M n  2 n 4 + m  D 2 D 2 

4E*1 2 2 4 E 1  ' n3 + mn - n + EAn 2 ~ D 2  D 

0 

Combining the first two gives 

4 - 
D2 

0 

4Ei 
- (n4 - n 2 
D2 D 

- 21 (n3 - n) 
4EI 

 EA(^' - 1) E A  (n3 - n) 

0 
4E12n4 D- 1 0 

n 
D2 
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0 0 

4E12 4 

D2 
n - 

- -  
nul + u2 

- - 
2 u1 + nu 

- 
u3 

%u2(nz2 - 

nu + u 1 2  x =  1 
- - 
u + nu2 1 x =  2 

Then 

- - Ncl - x2 
u1 

- 
2 n - 1  

- - x1 + nx2 
2 n - 1  u2 - 

Also 

2 2 x1 + x2  - 
2 2  3-v m a  w - 1 -- 

4 E t  

2 2 x + x2 - (n+ l )  

1 
2 2  +- -  +- 

3-v ma w 
4 E t  

l+w l+w 2a u3 4 E t  
re E t  x1-x2 n-1 D - ma w 1 N 

sin n e  D --- 

so 

2 n - I  D -  (XI - x2) + -- - r N 
n 1-v 2a u3 

2 2 2 - (n - l ) (x1+x2)  + (11 -1) 2y u3 rria +--- 
2 2  

I 3-v m a  (AI 

4 E t  

4 E t  
--- - 

A-E; 



r h' 

cos ne 

X 

- 
*3 

- n  

I O  

- 

0 

Nr o 
s i n  ne D 

2 2  
m a w  +- 

E t  

2 n - 1  D -  (xl - x2) - - - l+v 2a 
-I 

D -  -(n-l)(xl+x,)  + (I? 2 -1) 2a u3 - 
2 2  

1 3 4  ma w 
4 E t  

--- 

I n  order  t o  s implify,  l e t  EA be very l a r g e  so  t h a t  t he  second equation 

y i e lds  x2 = 0. Also  l e t  E1 = E12 = E1 and u = 1/3 .  Then 1 

r 

2 2  m a w  - 
Ec 3 ( n + l )  - (3n+l)  E t  
D 2 2  + -  

4-8  5 
3 E t  

I -  -- - - 

L 

Expanding t h e  determinant gives  the  condi t ion f o r  n o n t r i v i a l  so lu t ion .  

This would allow t h e  determination of t h e  required r i n g  s t i f f n e s s  t o  produce a 

desired frequency. Of course,  w e  want t o  f ind  t h e  r ing  s t i f f n e s s  fo r  which the  

frequency i s  the same as  the  fixed-edge value.  Therefore,  we set 

E t  
2 

*2 = - 
ma 

The r e s u l t  i s  
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Thehighest s t i f fness  arises from n=2. Solving gives, f inally 

where and M are the masses of the ring and the surface, respectively. 
S 


